
A Simplified High Dynamic Range Bilateral Filter

David Beynon

June 17, 2011

1 Abstract

An optimisation is presented which allows an efficient translation invariant
implementation of the bilateral filter with a simplified weighting function
which is suitable for use with high dynamic range images.

The algorithm relies on a reformulation of the bilateral filter, which allows
some of the advantages of histogram based methods to be directly applied
to high dynamic range data. In particular it owes a debt to the work of
Weiss[4].

2 Introduction

The bilateral filter is a nonlinear edge preserving low pass filter in which
the value of each pixel is replaced by a weighted sum of nearby pixels, with
weights dependent on both the spatial distance and difference in value from
the ”central” pixel.

In the original form of the filter the Gaussian function G(σ, x) is used for
both the spatial and value terms. In a two dimensional image this would
give us the weighting function:

W (σspatial, σvalue, x0, y0, value0, x, y, value) = G(σspatial, sqrt((x− x0)
2 + (y − y0)

2)) ∗
G(σrange, value− value0)

1



The inclusion of the ”value” term results in a blurring filter that does not
propagate over strong edges, but does remove fine detail and noise from a
signal.

The main drawback of the bilateral filter is its computational complexity.
A naive implementation requires weights to be calculated for every pixel
within the spatial extent of the filter. For a circular filter with radius r this
results in a a computational cost of O(r2), which can lead to computation
times of hours for filter sizes on the order of r = 100.

More recent work has reduced the cost to O(log(r))[4] and even O1[3] for low
dynamic range images, but the nature of histogram based methods makes
it difficult to apply them to high dynamic range data efficiently.

Durand & Dorsey[1] and Paris & Durand[2] introduced approximations
which allow very fast processing of images. These are suited to many appli-
cations where exact shift invariance is not essential.

3 The Algorithm

3.1 Mathematical Derivation

If we simplify the bilateral filter so that its spatial term is a box filter then
given a current pixel value v and a weighting function w(v) then the output
value for the pixel will be given by:

B(v, w) =
∑

vw(v)/
∑

w(v) (1)

In the case of a bilateral filter, we may choose a weighting function such
that the weight is zero if the difference between v and the current value at
the centre of the filter, v0, is greater than a threshold t. This gives us:

B(v, w) =
v0+t∑

v=v0−t
vw(v)/

v0+t∑
v=v0−t

w(v) (2)

Given a spatial box filter and a simple quadratic weighting function:

w(v) = 1 − ((v0 − v)/t)2 (3)

2



The weighting function expands to:

v0+t∑
v=v0−t

w(v) = (1 − ((v0 − v1)/t)
2) + (1 − ((v0 − v2)/t)

2) + ... (4)

and the value * weight function expands to:

v0+t∑
v=v0−t

vw(v) = v(1 − ((v0 − v1)/t)
2) + v(1 − ((v0 − v2)/t)

2) + ... (5)

If we define v′ = v
t then we can simplify this to:

v′0+1∑
v′=v′0−1

w′(v′) = n(1 − v′0
2
) + 2v′0

v′0+1∑
v′=v′0−1

v′ −
v′0+1∑

v′=v′0−1
v′2 (6)

where n is the total number of pixels with non zero weight. For the vw(v)
terms we get:

v′0+1∑
v′=v′0−1

v′w′(v′) = (1 − v′0
2
)

v′0+1∑
v′=v′0−1

v′ + 2v′0

v′0+1∑
v′=v′0−1

v′2 −
v′0+1∑

v′=v′0−1
v′3 (7)

therefore:

B(v, w) = t

(1 − v′0
2)

∑v′0+1

v′=v′0−1
v′ + 2v′0

∑v′0+1

v′=v′0−1
v′2 −

∑v′0+1

v′=v′0−1
v′3

n(1 − v′0
2) + 2v′0

∑v′0+1

v′=v′0−1
v′ −

∑v′0+1

v′=v′0−1
v′2


(8)

3.2 Data structures

In order to make use of this derivation we need to be able to efficiently

retrieve values of the n,
∑v′0+t

v′=v′0−t
v′,

∑v′0+t

v′=v′0−t
v′2 and

∑v′0+t

v′=v′0−t
v′3 terms.

3



The current implementation uses an AVL tree in which each node stores the
values v′, v′2, v′3 and the sums of these values and number of nodes in its
sub tree.

The distributive property of histograms exploited by Weiss[4] also applies to
the totals used by this algorithm. This allows some of the same optimisations
to be employed.

A multi level data structure spans the width of the image or tile to be
processed. The finest level consists of a single AVL tree per column of
pixels. Subsequent levels contain fewer trees, each of which covers a larger
area of the image.

Figure 1: Multi level data structure. Trees accessed while calculating the
filtered value of the pixel are coloured green

The structure is populated with the values of all pixels in the horizontal
strip of image associated with scan lines in the range y− r ≤ y ≤ y+ r. For
each pixel in the current scan line the structure is traversed in such a way
as to minimise the number of tree look ups. The structure is incrementally
updated by removing pixels on the line y − r, incrementing y and adding
pixels on the line y + r.

3.3 Implementation details

The AVL tree data structure is much cheaper to access than it is to update,
so it makes sense to perform some tuning of the data structure outlined in

4



figure 1. In our implementation we found that having the trees in each layer
cover 4 times the number of pixels as the layer below was reasonable.

Limiting the number of layers so there was always one less than we would
get if we allowed them to grow to the diameter of the filter also helped. The
performance impact of changing this detail is shown in figure 5.

In order to avoid floating point precision issues we encode floating point
values as integers when operating on log(intensity) values. A signed 64-bit
integer has sufficient precision to support filters up to around r = 100, or
400000 pixels with a precision of 10−6 for reasonable values of t.

Our implementation makes use of multiple processors or cores by splitting
the image into tiles. In order to mitigate the cost of the initial setup of the
data structures it is best to make the tiles themselves quite large. A default
size of 512x1024 seems to work well for photographic use.

Early implementations suffered from serious scaling problems due to locking
in the system memory allocator. The current version uses simple list based
thread local allocators to avoid this problem. The results of scaling tests
are shown in figures 6 and 7.

3.4 Possible extensions

The algorithm may be extended to any function of the form w(v) = 1 −
((v0 − v)/t)n with positive integer values of n, simply by adding terms up
to n + 1. Even values of n are preferable, as an odd exponent requires
values above and below v0 to be handled separately, which introduces a
performance penalty.

As the algorithm only depends on the sums of values within its range it is
possible to implement a ”bilateral filter” with an infinite spatial extent very
efficiently. For each pixel create a record containing the pixels luminance
and its original position in the image. These records are sorted in order
of value, and traversed in order. 3 pointers are maintained, to the current
pixel, and the minimum and maximum pixels to be considered.

The basic formulation also lends itself to filtering in any number of dimen-
sions, although the design of suitable data structures for more than two is
beyond the scope of this document.

5



4 Performance

All performance tests were performed on a 9.5 megapixel HDR image. Tests
of our algorithm were performed by timing the hdrshop plug in stm bilateral filter.exe

on a dual quad core Xeon running at 2.26GHz. All the tests were forced to
run on a single core. Times include any file loading, saving and setup time
performed by the applications.

Each test consisted of 3 passes over the image. The corresponding σ value
was calculated in order to allow easy comparison with other implementa-
tions.

Two other bilateral filter implementations were compared. The first was
an exact implementation with SSE optimisation, which is available as part
of Francesco Banterle’s collection of hdrshop plugins. The second was an
implementation of Sylvain Paris and Frédo Durand’s fast bilateral filtering
algorithm taken from their web site.

The comparison with the exact algorithm is shown in figure 2. The new
algorithm shows a substantial improvement in performance, and appears to
show near linear scaling with filter radius over the range tested, albeit with
a large constant overhead. An exact analysis has not been carried out, but
there is reason to believe it scales with log2(r).

Figure 3 shows a comparison with the ”truncated kernel” version of Paris and
Durand’s 2006 algorithm. Due to the file loading code in their test program
the test was carried out with a low dynamic range version of the image,
but there is no reason to believe that performance with high dynamic range
data would be any different. Performance of Paris and Durand’s algorithm
is extremely strong, and almost unaffected by filter size.

A comparison of all three approaches is shown in figure 4.

5 Results

Figure 8 demonstrates use of the filter on the log(luminance) channel of a
low dynamic range image, and the results of using it for contrast enhance-
ment.

Figure9 demonstrates tone mapping an image using a global algorithm, and
contrast enhancement with our algorithm as a preprocess.

6



6 Resources

An implementation of the algorithm can be found as part of the STM high
dynamic range image processing toolkit, which is available at: http://www.
spectral3d.co.uk/Vapourware/tonemap/.

The source code for the bilateral filter itself is in the directory: http://

www.spectral3d.co.uk/repo/stm/processors/bilateral.

An implementation of the ”infinite” bilateral filter can be found in the di-
rectory: http://www.spectral3d.co.uk/repo/stm/processors/global.

The SSE optimised exact implementation used for benchmarking is available
as part of ”Banty’s Toolkit”, which can be found in Francesco Bantarele’s
web site at: http://www.banterle.com/francesco/.

The paper and source code for the approximate bilateral filter is currently
available on Sylvain Paris’ project page here: http://people.csail.mit.

edu/sparis/bf/.

References

[1] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of
high-dynamic-range images. In ACM Transactions on Graphics, volume
21(3) of Proceedings of the SIGGRAPH conference. ACM, 2002.

[2] Sylvain Paris and Frédo Durand. A fast approximation of the bilat-
eral filter using a signal processing approach. In In Proceedings of the
European Conference on Computer Vision, pages 568–580, 2006.

[3] Fatih Porkili. Constant time o(1) bilateral filtering. In Computer Vision
and Pattern Recognition. IEEE, 2008.

[4] Ben Weiss. Fast median and bilateral filtering. In ACM Transactions
on Graphics, volume 25(3) of Proceedings of the SIGGRAPH conference.
ACM, 2006.

7

http://www.spectral3d.co.uk/Vapourware/tonemap/
http://www.spectral3d.co.uk/Vapourware/tonemap/
http://www.spectral3d.co.uk/repo/stm/processors/bilateral
http://www.spectral3d.co.uk/repo/stm/processors/bilateral
http://www.spectral3d.co.uk/repo/stm/processors/global
http://www.banterle.com/francesco/
http://people.csail.mit.edu/sparis/bf/
http://people.csail.mit.edu/sparis/bf/


Figure 2: Comparison with exact SSE implementation

Figure 3: Comparison with Paris & Durand’s approximate algorithm

8



Figure 4: Comparison with exact algorithm and Paris & Durand’s approxi-
mate algorithm

9



Figure 5: Effect of minor data structure tuning. Note the steps in the red
plot when the layer count increases

Figure 6: Scaling behaviour on a dual quad core Intel Xeon. 3 passes with
a filter radius of 20

10



Figure 7: Scaling behaviour on a dual quad core Intel Xeon. 3 passes with
a filter radius of 20

(a) Original (b) Bilateral filter (c) Contrast enhancement

Figure 8: Bilateral filtering and contrast adjustment of a low dynamic range
image

11



(a) Global operator

(b) Local operator using bilateral filter

Figure 9: Tone mapping

12


	Abstract
	Introduction
	The Algorithm
	Mathematical Derivation
	Data structures
	Implementation details
	Possible extensions

	Performance
	Results
	Resources

